ContohSoal 1. Diketahui dua buah vektor sebagai berikut. Vektor posisi (r) atau vektor kedudukan adalah posisi atau kedudukan suatu benda pada bidang datar maupun ruang yang dapat dinyatakan dalam sebuah vektor pada saat tertentu. Vektor posisi dalam dua dimensi dapat dituliskan sebagai berikut: sedangkan untuk vektor posisi dalam ruang (tiga Subscribe!Klik di sini untuk berlangganan artikel melalui Telegram. Merentang ruang vektor, adalah syarat bagi himpunan bebas linear untuk menjadi basis ruang vektor. Tapi, apa sih yang disebut merentang? Sebelum menjawab pertanyaan ini, mari perhatikan daftar isi berikut. Definisi Merentang Definisi Misalkan adalah subset tak kosong dari suatu ruang vektor dan adalah himpunan yang memuat semua kombinasi linear yang mungkin dari vektor-vektor dalam . Maka disebut subruang dari yang direntang oleh . Dengan kata lain, himpunan merentang . Subruang ini dituliskan dengan notasi Berdasarkan definisi, himpunan dikatakan merentang ruang vektor , jika Dengan kata lain, setiap vektor dalam dapat dinyatakan sebagai kombinasi linear dari vektor-vektor dalam . Dua himpunan yang berbeda dapat merentang subruang yang sama. Hal ini termuat dalam teorema berikut. Teorema 1 Misalkan dan adalah subset tak kosong dari suatu ruang vektor . Maka jika dan hanya jika setiap vektor dalam dapat dinyatakan sebagai kombinasi linear dari vektor-vektor dalam , begitupun sebaliknya. Soal dan PembahasanNomor 1Misalkan adalah ruang vektor, dan himpunan merentang . Jika , maka buktikan bahwa himpunan juga merentang .PembahasanMisalkan $\textbf{q} \in V$. Karena himpunan $S$ merentang $V$, maka terdapat skalar $k_1,k_2,\ldots,k_n$ sedemikian sehingga $$\textbf{q} = k_1\textbf{u}_1+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n$$ Persamaan ini dapat ditulis sebagai $$\textbf{q} = 0\textbf{w} + k_1\textbf{u}_1+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n$$ Artinya, $\textbf{q}$ adalah kombinasi linear dari vektor-vektor $\textbf{w},\textbf{u}_1,\textbf{u}_2,\ldots,\textbf{u}_n$. Dengan demikian, himpunan $S'$ juga merentang $V$. 2Misalkan adalah ruang vektor dan himpunan merentang . Jika adalah kombinasi linear dari vektor-vektor lainnya, maka buktikan bahwa himpunan juga merentang .PembahasanMisalkan $\textbf{q} \in V$ dan $\textbf{u}_1$ adalah kombinasi linear dari vektor-vektor lain dalam $S$, yaitu $$\textbf{u}_1=l_2\textbf{u}_2+l_3\textbf{u}_3+\ldots+l_n\textbf{u}_n$$ untuk suatu skalar $l_2,l_3,\ldots,l_n$. Karena himpunan $S$ merentang $V$, maka terdapat skalar $k_1,k_2,\ldots,k_n$ sedemikian sehingga $$\begin{aligned} \textbf{q} &= k_1\textcolor{blue}{\textbf{u}_1}+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n \\ &= k_1\textcolor{blue}{l_2\textbf{u}_2+l_3\textbf{u}_3+\ldots+l_n\textbf{u}_n}+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n \\ &= k_1l_2+k_2\textbf{u}_2+k_1l_3+k_3\textbf{u}_3+\ldots+k_1l_n+k_n\textbf{u}_n \end{aligned}$$ Artinya, $\textbf{q}$ adalah kombinasi linear dari vektor-vektor $\textbf{u}_2,\ldots,\textbf{u}_n$. Dengan demikian, himpunan $S'$ juga merentang $V$. 3Misalkan adalah ruang vektor dan adalah himpunan vektor dalam . Buktikan bahwa adalah subruang .PembahasanHimpunan $V$ bersifat tertutup terhadap operasi penjumlahan vektor dan perkalian skalar, sehingga $\text{span}S$ adalah subset dari $V$. Selain itu, vektor nol adalah kombinasi linear dari vektor-vektor dalam $S$, sehingga $\text{span}S$ bukan himpunan kosong. Misalkan $k$ adalah skalar dan $\textbf{v},\textbf{w} \in \text{span}S$ dengan $$\begin{aligned} \textbf{v} &= l_1\textbf{u}_1+l_2\textbf{u}_2+\ldots+l_n\textbf{u}_n \\ \textbf{w} &= m_1\textbf{u}_1+m_2\textbf{u}_2+\ldots+m_n\textbf{u}_n \end{aligned}$$ Untuk membuktikan $\text{span}S$ subruang dari $V$, perlu ditunjukkan $\textbf{v}+k\textbf{w} \in \text{span}S$. Perhatikan bahwa $$\begin{aligned} \textbf{v}+k\textbf{w} &= l_1\textbf{u}_1+l_2\textbf{u}_2+\ldots+l_n\textbf{u}_n+km_1\textbf{u}_1+m_2\textbf{u}_2+\ldots+m_n\textbf{u}_n \\ &= l_1\textbf{u}_1+l_2\textbf{u}_2+\ldots+l_n\textbf{u}_n+km_1\textbf{u}_1+km_2\textbf{u}_2+\ldots+km_n\textbf{u}_n \\ &= l_1+km_1\textbf{u}_1+l_2+km_2\textbf{u}_2+\ldots+l_n+km_n\textbf{u}_n \end{aligned}$$ Akibatnya $\textbf{v}+k\textbf{w} \in \text{span}S$. Dengan demikian, $\text{span}S$ adalah subruang vektor dari $V$. 4Misalkan adalah ruang vektor dan adalah himpunan vektor dalam . Buktikan bahwa .PembahasanMisalkan $\textbf{u}_r \in S$. Untuk membuktikan $S \subseteq \text{span}S$, perlu ditunjukkan $\textbf{u}_r \in \text{span}S$. Perhatikan bahwa $$\textbf{u}_r = 0\textbf{u}_1+0\textbf{u}_2+\ldots+1\textbf{u}_r+\ldots+0\textbf{u}_n$$ sehingga $\textbf{u}_r \in \text{span}S$. Dengan demikian, $S \subseteq \text{span}S$. 5Misalkan adalah ruang vektor dan adalah himpunan vektor dalam . Jika adalah subruang yang memuat , maka buktikan bahwa .PembahasanMisalkan $\textbf{t} \in \text{span}S$, sehingga $$\textbf{t}=k_1\textbf{u}_1+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n$$ untuk suatu skalar $k_1,k_2,\ldots,k_n$. Diketahui $S \subseteq W$, sehingga $\textbf{u}_1,\textbf{u}_2,\ldots,\textbf{u}_n \in W$. Karena $W$ subgrup, maka aksioma 1 dan 6 berlaku, sehingga $$k_1\textbf{u}_1+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n = \textbf{t} \in W$$ Dengan demikian, $\text{span}S \subseteq W$. 6Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a_1,a_2,a_3 \in \mathbb{R}^3$. Perhatikan bahwa $$\begin{aligned} \textbf{w} &= a_1,a_2,a_3 \\ &= a_1,0,0+0,a_2,0+0,0,a_3 \\ &= a_11,0,0+a_20,1,0+a_30,0,1 \\ &= a_1 \textbf{u}_1+a_2 \textbf{u}_2 + a_3 \textbf{u}_3 \end{aligned}$$ Dengan demikian, himpunan $S$ merentang $\mathbb{R}^3$.Nomor 7Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a,b,c \in \mathbb{R}^3$. Perlu diperiksa, apakah terdapat skalar $p,q,r$ sedemikian sehingga $\textbf{w}=p\textbf{u}_1 + q\textbf{u}_2 + r\textbf{u}_3$. Perhatikan bahwa $$\begin{aligned} a,b,c &= p2,2,2 + q0,0,3 + r0,1,1 \\ &= 2p,2p,2p + 0,0,3q + 0,r,r \\ &= 2p,2p+r,2p+3q+r \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} 2p&\\&&\\& \=\ &a \\ 2p&\\&&\+\&r \=\ &b \\ 2p&\+\&3q&\+\&r \=\ &c \end{alignat*}\right.$$ Dari persamaan pertama diperoleh $p=a/2$. Substitusi nilai $p$ pada persamaan kedua, untuk memperoleh nilai $r=b-a$. Terakhir, substitusi nilai $p$ dan $r$ pada persamaan ketiga, untuk memperoleh nilai $q=c-b/3$. Jadi, sistem persamaan di atas mempunyai solusi $$p=\frac{a}{2}, \ q=\frac{c-b}{3}, \ r=b-a$$ Dengan demikian, himpunan $S$ merentang $\mathbb{R}^3$.Nomor 8Misalkan dengan Gunakan Teorema 1 untuk menunjukkan bahwa himpunan merentang .PembahasanMisalkan $W=\{\textbf{e}_1,\textbf{e}_2,\textbf{e}_3\}$ dengan $$\textbf{e}_1=1,0,0,\\textbf{e}_2=0,1,0,\\textbf{e}_3=0,0,1$$ Kita tahu bahwa himpunan $W$ merentang $\mathbb{R}^3$. Karena $\textbf{u}_1,\textbf{u}_2,\textbf{u}_3 \in \mathbb{R}^3$, maka ketiganya dapat ditulis sebagai kombinasi linear dari vektor-vektor dalam $W$. Berikutnya, tinggal ditunjukkan bahwa $\textbf{e}_1,\textbf{e}_2,\textbf{e}_3$ dapat ditulis sebagai kombinasi linear dari vektor-vektor dalam $S$. Perhatikan bahwa $$\begin{aligned} \textbf{e}_3 &= \frac{1}{3} \textbf{u}_2 \\ \textbf{e}_2 &= \textbf{u}_3-\frac{1}{3} \textbf{u}_2 \\ \textbf{e}_1 &= \frac{1}{2} \textbf{u}_1-\textbf{u}_3 \end{aligned}$$ Berdasarkan Teorema 1, diperoleh $$\text{span}S=\text{span}W=\mathbb{R}^3$$ Dengan demikian, himpunan $S$ merentang $\mathbb{R}^3$. 9Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a,b,c \in \mathbb{R}^3$. Perlu diperiksa, apakah terdapat skalar $p,q,r$ sedemikian sehingga $\textbf{w}=p\textbf{u}_1 + q\textbf{u}_2 + r\textbf{u}_3$. Perhatikan bahwa $$\begin{aligned} a,b,c &= p1,1,1 + q1,2,3 + r1,5,8 \\ &= p+q+r,p+2q+5r,p+3q+8r \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} p&\+\&q&\+\&r \=\ &a \\ p&\+\&2q&\+\&5r \=\ &b \\ p&\+\&3q&\+\&8r \=\ &c \end{alignat*}\right.$$ Sistem persamaan ini mempunyai matriks koefisien $$A=\begin{bmatrix}1&1&1\\1&2&5\\1&3&8\end{bmatrix}$$ Karena $\text{det}A=-1\neq0$ periksa!, maka sistem persamaan di atas konsisten untuk setiap $a,b,c \in \mathbb{R}^3$. Dengan demikian, himpunan $S$ merentang $\mathbb{R}^3$.Nomor 10Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a,b,c \in \mathbb{R}^3$. Perlu diperiksa, apakah terdapat skalar $p,q,r$ sedemikian sehingga $\textbf{w}=p\textbf{u}_1 + q\textbf{u}_2 + r\textbf{u}_3$. Perhatikan bahwa $$\begin{aligned} a,b,c &= p2,-1,3 + q4,1,2 + r8,-1,8 \\ &= 2p+4q+8r,-p+q-r,3p+2q+8r \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} 2p&\+\&4q&\+\&8r \=\ &a \\ -p&\+\&q&\-\&r \=\ &b \\ 3p&\+\&2q&\+\&8r \=\ &c \end{alignat*}\right.$$ Sistem persamaan ini mempunyai matriks koefisien $$A=\begin{bmatrix}2&4&8\\-1&1&-1\\3&2&8\end{bmatrix}$$ Karena $\text{det}A=0$ periksa!, maka dapat disimpulkan bahwa himpunan $S$ tidak merentang $\mathbb{R}^3$.Nomor 11Misalkan Tentukan syarat yang harus dipenuhi oleh sehingga berada dalam .PembahasanMisalkan $\textbf{w} = a,b,c \in \text{span}\{\textbf{u}_1,\textbf{u}_2,\textbf{u}_3\}$, sehingga terdapat skalar $p,q,r$ yang memenuhi $$\begin{aligned} \textbf{w} &= p\textbf{u}_1 + q\textbf{u}_2 + r\textbf{u}_3 \\ a,b,c &= p1,2,0 + q-1,1,2 + r3,0,-4 \\ &= p-q+3r,2p+q,2q-4r \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} p&\-\&q&\+\&3r \=\ &a \\ 2p&\+\&q&\\& \=\ &b \\ &\\&2q&\-\&4r \=\ &c \end{alignat*}\right.$$ Matriks yang diperbesar dari sistem persamaan ini adalah $$\begin{bmatrix}1&-1&3&a\\2&1&0&b\\0&2&-4&c\end{bmatrix}$$ dengan bentuk eselon baris $$\begin{bmatrix}1&-1&3&a\\0&1&-2&\frac{-2a+b}{3}\\0&0&0&\frac{-2a+b}{3}-\frac{c}{2}\end{bmatrix}$$ Karena $\textbf{w} \in \text{span}\{\textbf{u}_1,\textbf{u}_2,\textbf{u}_3\}$, maka sistem persamaan di atas harus konsisten. Dan ini terjadi, jika $$\frac{-2a+b}{3}-\frac{c}{2}=0 \quad \Longrightarrow \quad -4a+2b-3c=0$$ Jadi, syarat yang harus dipenuhi oleh $a,b,c$ adalah $-4a+2b-3c=0$.Nomor 12Misalkan dan Gunakan Teorema 1, untuk menunjukkan bahwa .PembahasanPertama, kita akan menunjukkan bahwa $\textbf{u}_1,\textbf{u}_2,\textbf{u}_3$ dapat ditulis sebagai kombinasi linear dari $\textbf{w}_1,\textbf{w}_2$. Hal ini dapat dilakukan dengan inspeksi, karena komponen pertama dari $\textbf{w}_2$ adalah $0$. $$\begin{aligned} \textbf{u}_1 &= \textbf{w}_1+\textbf{w}_2 \\ \textbf{u}_2 &= 2\textbf{w}_1+\textbf{w}_2 \\ \textbf{u}_3 &= -\textbf{w}_1 \end{aligned}$$ Berikutnya, kita akan menunjukkan bahwa $\textbf{w}_1,\textbf{w}_2$ dapat ditulis sebagai kombinasi linear dari $\textbf{u}_1,\textbf{u}_2,\textbf{u}_3$. Perhatikan bahwa $$\begin{aligned} \textbf{w}_1 &= -\textbf{u}_3 \\ \textbf{w}_2 &= \textbf{u}_1+\textbf{u}_3 \end{aligned}$$ Berdasarkan Teorema 1, dapat disimpulkan bahwa $$\text{span}\{\textbf{u}_1,\textbf{u}_2,\textbf{u}_3\}=\text{span}\{\textbf{w}_1,\textbf{w}_2\}$$ 13Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{q}=a+bx+cx^2 \in P_2$. Perhatikan bahwa $$\begin{aligned} \textbf{q} &= a+bx+cx^2 \\ &= a \cdot 1 + b \cdot x + c \cdot x^2 \\ &= a \textbf{p}_1+b \textbf{p}_2 + c \textbf{p}_3 \end{aligned}$$ Dengan demikian, himpunan $S$ merentang $P_2$.Nomor 14Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a+bx+cx^2 \in P_2$. Perlu diperiksa, apakah terdapat skalar $k_1,k_2,k_3$ sedemikian sehingga $\textbf{w}=k_1\textbf{p}_1 + k_2\textbf{p}_2 + k_3\textbf{p}_3$. Perhatikan bahwa $$\begin{aligned} a+bx+cx^2 &= k_1x^2+1 + k_2x^2+x + k_3x+1 \\ &= k_1+k_3 + k_2+k_3x + k_1+k_2x^2 \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} k_1&\\&&\+\&k_3 \=\ &a \\ &\\&k_2&\+\&k_3 \=\ &b \\ k_1&\+\&k_2&\\& \=\ &c \end{alignat*}\right.$$ Sistem persamaan ini mempunyai matriks koefisien $$A=\begin{bmatrix}1&0&1\\0&1&1\\1&1&0\end{bmatrix}$$ Karena $\text{det}A=-2\neq0$ periksa!, maka sistem persamaan di atas konsisten untuk setiap $a+bx+cx^2 \in P_2$. Dengan demikian, himpunan $S$ merentang $P_2$.Nomor 15Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a+bx+cx^2 \in P_2$. Perlu diperiksa, apakah terdapat skalar $k_1,k_2,k_3,k_4$ sedemikian sehingga $\textbf{w}=k_1\textbf{p}_1 + k_2\textbf{p}_2 + k_3\textbf{p}_3+k_4\textbf{p}_4$. Perhatikan bahwa $$\begin{aligned} a+bx+cx^2 &= k_11-x+2x^2 + k_23+x + k_35-x+4x^2 + k_4-2-2x+2x^2 \\ &= k_1+3k_2+5k_3-2k_4 + -k_1+k_2-k_3-2k_4x + 2k_1+4k_3+2k_4x^2 \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{4} k_1&\+\&3k_2&\+\&5k_3&\-\&2k_4 \=\ &a \\ -k_1&\+\&k_2&\-\&k_3&\-\&2k_4 \=\ &b \\ 2k_1&\\&&\+\&4k_3&\+\&2k_4 \=\ &c \end{alignat*}\right.$$ Matriks yang diperbesar dari sistem persamaan ini adalah $$A=\begin{bmatrix} 1&3&5&-2&a\\ -1&1&-1&-2&b\\ 2&0&4&2&c \end{bmatrix}$$ dengan bentuk eselon baris $$A=\begin{bmatrix} 1&3&5&-2&a\\ 0&1&1&-1&\frac{a+b}{4}\\ 0&0&0&0&-\frac{a}{2}+\frac{3b}{2}+c \end{bmatrix}$$ Sistem persamaan ini konsisten, hanya jika $$-\frac{a}{2}+\frac{3b}{2}+c=0$$ Dengan demikian, himpunan $S$ tidak merentang $P_2$.Nomor 16Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $A \in M_{2\times 2}\mathbb{R}$, dengan $$A=\begin{bmatrix}a_1&a_2\\a_3&a_4\end{bmatrix}$$ untuk suatu $a_1,a_2,a_3,a_4 \in \mathbb{R}$. Perhatikan bahwa $$\begin{aligned} A &= \begin{bmatrix}a_1&a_2\\a_3&a_4\end{bmatrix} \\[5pt] &= \begin{bmatrix}a_1&0\\0&0\end{bmatrix}+\begin{bmatrix}0&a_2\\0&0\end{bmatrix}+\begin{bmatrix}0&0\\a_3&0\end{bmatrix}+\begin{bmatrix}0&0\\0&a_4\end{bmatrix} \\[5pt] &= a_1\begin{bmatrix}1&0\\0&0\end{bmatrix}+a_2\begin{bmatrix}0&1\\0&0\end{bmatrix}+a_3\begin{bmatrix}0&0\\1&0\end{bmatrix}+a_4\begin{bmatrix}0&0\\0&1\end{bmatrix} \\[5pt] &= a_1E_1 + a_2E_2 + a_3E_3 + a_4E_4 \end{aligned}$$ Dengan demikian, himpunan $S$ merentang $M_{2 \times 2}\mathbb{R}$.Nomor 17Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $P \in M_{2 \times 2}\mathbb{R}$, dengan $$P=\begin{bmatrix}p_1&p_2\\p_3&p_4\end{bmatrix}$$ untuk suatu $p_1,p_2,p_3,p_4 \in \mathbb{R}$. Perlu diperiksa, apakah terdapat skalar $k_1,k_2,k_3,k_4$ sedemikian sehingga $P=k_1A+k_2B+k_3C+k_4D$. Perhatikan bahwa $$\begin{aligned} \begin{bmatrix}p_1&p_2\\p_3&p_4\end{bmatrix} &= k_1\begin{bmatrix}1&0\\0&0\end{bmatrix} + k_2\begin{bmatrix}1&1\\0&0\end{bmatrix} + k_3\begin{bmatrix}1&1\\1&0\end{bmatrix} + k_4\begin{bmatrix}1&0\\1&1\end{bmatrix} \\[5pt] &= \begin{bmatrix}k_1+k_2+k_3+k_4&k_2+k_3\\k_3+k_4&k_4\end{bmatrix} \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{4} k_1&\+\&k_2&\+\&k_3&\-\&k_4 \=\ &p_1 \\ &\\&k_2&\+\&k_3&\\& \=\ &p_2 \\ &\\&&\\&k_3&\+\&k_4 \=\ &p_3 \\ &\\&&\\&&\\&k_4 \=\ &p_4 \end{alignat*}\right.$$ Melalui substitusi balik, diperoleh solusi $$\begin{aligned} k_1 &= p_1-p_2-p_4 \\ k_2 &= p_2-p_3+p_4 \\ k_3 &= p_3-p_4 \\ k_4 &= p_4 \end{aligned}$$ Dengan demikian, himpunan $S$ merentang $M_{2 \times 2}\mathbb{R}$.
Duabuah vektor kecepatan besarnya 3 m/s dan 4m/s bekerja seritik tangkap Tentukan kedua vektor jika sudut yang diampit kedua vektor adalah a. 30° Tentukan resultan dari gaya-gaya berikut dengan metode grafis dan analisis Fisika 3 20.08.2019 16:53.
Hai Quipperian, pernahkah kamu bermain tarik tambang? Permainan tarik tambang akan dimenangkan oleh tim yang memiliki kekuatan atau gaya total lebih besar. Jika gaya tarik ke kanan lebih besar daripada tarikan ke kiri, sudah pasti tim kanan akan memenangkannya. Peristiwa tarik tambang itu merupakan salah satu contoh penerapan vektor dalam kehidupan sehari-hari. Saat membahas vektor, ada beberapa rumus yang harus kamu pelajari. Lalu, apa saja rumus vektor itu? Daripada penasaran, yuk simak selengkapnya! Pengertian Vektor Vektor adalah besaran yang memiliki nilai dan arah. Operasi vektor tentu berbeda dengan operasi skalar. Pada operasi skalar, kamu bisa mengoperasikan langsung suatu bilangan, misalnya 2 + 3 = 5. Namun, tidak demikian dengan vektor. Operasi vektor harus mengacu pada arah besarannya. Jika ke kanan bertanda positif, maka ke kiri harus bertanda negatif. Prinsip dasar inilah yang digunakan pada peristiwa tarik tambang. Ruang Lingkup Vektor Berikut ini merupakan ruang lingkup vektor. Vektor Negatif Vektor negatif -P adalah vektor yang memiliki nilai sama dengan vektor P, tapi arahnya berlawanan. Vektor Nol Vektor nol adalah vektor yang tidak memiliki panjang dengan arah sembarang. Di dalam penulisannya, vektor nol biasa dinyatakan sebagai matriks nol seperti berikut. Vektor Posisi Vektor posisi adalah vektor yang ujungnya berada di suatu titik koordinat tertentu dengan pangkal berada di titik koordinat 0, 0. Vektor posisi biasanya memuat vektor satuan i dan j. Perhatikan contoh berikut. Jika ditarik dari titik pusat ke titik P, maka vektor posisinya disebut OP. Panjang vektor OP bisa dicari dengan teorema Phytagoras, seperti berikut. Lalu, bagaimana jika titik pangkalnya tidak berada di titik 0, 0? Perhatikan gambar berikut. Cara menentukan panjang vektor PQ, gunakan rumus vektor berikut. Panjang atau Nilai Vektor Panjang atau nilai vektor adalah nilai vektor tanpa arahnya. Panjang vektor selalu bernilai positif. Untuk itulah, penulisan panjang berada di dalam tanda mutlak …. Rumus panjang vektor sama dengan rumus Phytagoras, yaitu sebagai berikut. → jika pangkalnya berada di titik O 0, 0. → jika pangkalnya berada di titik P x1, y1. Vektor Satuan Vektor satuan adalah vektor yang memiliki nilai 1 satuan. Cara menentukan vektor satuan adalah membagi vektor tersebut dengan panjang vektornya. Perhatikan rumus vektor berikut. Vektor pada Bangun Dua Dimensi Vektor pada bangun dua dimensi memiliki dua komponen, yaitu komponen vektor searah sumbu-x dan komponen vektor searah sumbu-y. Penulisan dimensi dua vektor adalah sebagai berikut. Operasi Vektor Jenis-jenis operasi vektor sama seperti operasi bilangan pada umumnya. Perbedaannya terletak pada cara mengoperasikannya karena melibatkan arah. Adapun bentuk-bentuk operasi vektor adalah sebagai berikut. Penjumlahan Vektor Penjumlahan dua buah vektor mengacu pada dua aturan, yaitu aturan segitiga dan jajargenjang seperti berikut. Penjumlahan vektor dengan aturan segitiga Menurut aturan segitiga, penjumlahan dua buah vektor dilakukan dengan meletakkan pangkal salah satu vektor pada ujung vektor lainnya. Hasil penjumlahannya merupakan jarak antara pangkal salah satu vektor dan ujung vektor lainnya. Perhatikan contoh berikut. Penjumlahan vektor dengan aturan jajargenjang Menurut aturan jajargenjang dua buah vektor bisa dijumlahkan dengan meletakkan ujung pangkal kedua vektor pada titik yang sama seperti berikut. Untuk P=x1, y1 dan Q=x2, y2, rumus penjumlahan dua vektornya bisa dinyatakan sebagai berikut. Selisih Vektor Selisih vektor adalah operasi yang digunakan pada dua vektor yang memiliki arah atau tanda yang saling berlawanan. Rumus vektor selisih dinyatakan sebagai berikut. Perhatikan contoh ilustrasi berikut. Dari ilustrasi di atas, coba kamu perhatikan arah vektor Q. Semula arah vektor Q ke kanan. Oleh karena berlawanan, maka arah arah vektor -Q ke kiri. Perkalian Vektor Rumus perkalian vektor itu bermacam-macam, tergantung dari jenis perkaliannya. Adapun jenis-jenis perkalian vektor itu adalah sebagai berikut. Perkalian vektor dengan skalar Perkalian vektor dengan skalar artinya, skalar menjadi pengali dari vektor yang dimaksud. Misalnya, vektor P dikali skalar m, maka vektor hasil kalinya memiliki panjang m kali panjang vektor P. Untuk arahnya, bergantung sepenuhnya pada m. Jika m > 0, hasil kalinya searah dengan vektor P, jika m = 0 akan dihasilkan vektor nol, jika m < 0, hasil kalinya berlawanan dengan arah vektor P. Rumus perkalian vektor dengan skalar adalah sebagai berikut. Perhatikan contoh berikut. Diketahui . Tentukan nilai dari 2 ∙ P! Pembahasan Jadi, nilai 2 ∙ P = 4 -10 . Perkalian vektor dengan sudut tidak diketahui Pada prinsipnya, rumus perkalian titik antara dua buah vektor memiliki cara yang sama seperti perkalian pada umumnya. Rumus perkalian antara vektor P=x1, y1 dan vektor Q=x2, y2 adalah sebagai berikut. Perkalian vektor dengan sudut diketahui Jika posisi dua buah vektor membentuk sudut tertentu, maka rumus perkaliannya adalah sebagai berikut. Dengan α = sudut yang dibentuk oleh vektor P dan Q Untuk mencari nilai cos α, gunakan rumus berikut. Resultan Vektor Resultan vektor adalah panjang dari suatu vektor. Perhatikan gambar berikut. Untuk mencari resultan vektor atau panjang OR, gunakan rumus berikut. Sementara itu, arah vektor resultannya bisa ditentukan dengan rumus berikut. Contoh Soal Vektor Setelah kamu tahu apa saja rumus-rumus vektor itu, yuk asah kemampuanmu dengan contoh soal berikut. Contoh Soal 1 Dua buah vektor berada pada posisi seperti berikut. Tentukan hasil kali antara A dan B! Pembahasan Oleh karena kedua vektor membentuk sudut, kamu bisa menentukan hasil kalinya dengan rumus berikut. Mula-mula, tentukan dahulu A dan B. Lalu, substitusikan pada persamaan tersebut. Jadi, hasil kali antara A dan B adalah 9,87. Contoh Soal 2 Diketahui dua vektor berikut. Berapakah nilai cosinus sudut yang dibentuk oleh kedua vektor? Pembahasan Langkah pertama, kamu harus menentukan panjang vektor p dan q. Selanjutnya, gunakan persamaan berikut. Jadi, nilai cosinus yang dibentuk oleh kedua vektor adalah 865. Contoh Soal 3 Sebuah batu besar berada di tengah lapangan. Untuk memindahkan batu tersebut, dibutuhkan 2 truk penarik dengan posisi seperti berikut. Berapakah resultan gaya yang dihasilkan oleh kedua truk penarik? Pembahasan Diketahui FA = 120 N FB = 150 N α = 30o Ditanya FR =…? Jawab Untuk menentukan resultan gaya kedua truk, gunakan persamaan berikut. Jadi, resultan gaya tarik kedua truk adalah 234,30 N. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper! 1065.4. Integral Garis dan Aplikasinya Integral vektor adalah integral yang arah lintasannya telah ditentukan. Fungsi yang bernilai real untuk lebih dari satu peubah bebas, derivatifnya maupun integralnya tentunya menggunakan integral lipat dua atau lipat tiga diperlukan dalam menyelesaikan permasalahan permasalahan yang terkait dengan integral vektor. Dalam hal menyelesaikan integral vektor - Dilansir dari Encyclopedia Britannica, vektor merupakan besaran fisika yang memiliki besar dan arah. Resultan dari suatu vektor merupakan penjumlahan dari dua atau lebih vektor. Mari simak contoh soal dalam menentukan resultan vektor pada pembahasan resultan dari ketiga vektor di bawah ini. FAUZIYYAH Ilustrasi vektor F1, F2, dan F3 pada koordinat kartesius Langkah pertama adalah menentukan besar vektor pada proyeksi sumbu x dan sumbu y. F1 merupakan vektor dengan sudutnya diketahui berada pada referensi sumbu x. Sehingga kita dapat langsung memasukkannya ke dalam persamaan. Sementara itu vektor F1 termasuk pada kuadran 1, dimana sin dan cos bernilai positif. Baca juga Vektor Posisi, Kecepatan, dan Percepatan FAUZIYYAH Menentukan besar proyeksi vektor F1 pada sumbu x dan sumbu y F2 merupakan vektor dengan sudutnya diketahui berada pada referensi sumbu y. Sementara itu vektor F2 termasuk pada kuadran 2, dimana sin bernilai positif dan cos bernilai negatif. Untuk menentukan besar vektor F2, terdapat 2 cara yang dapat dipilih. Vektormerupakan salah satu materi matematika peminatan (mathematics- extended/further) yang dipelajari oleh siswa kelas X jurusan MIPA Tingkat SMA.Secara singkat, vektor merupakan besaran yang memiliki nilai sekaligus arah. Kadang vektor juga disebut sebagai garis berarah (garis yang memiliki panah), di mana panjang garis mewakili nilai vektor, sedangkan panah mewakili arah vektor.
BerandaTentukan vektor yang sama dari vektor-vektor berik...PertanyaanTentukan vektor yang sama dari vektor-vektor berikut! DKMahasiswa/Alumni Universitas Negeri MalangJawabandiperoleh vektor-vektor yang sama adalah serta .diperoleh vektor-vektor yang sama adalah serta .PembahasanVektor dikatakan sama apabila memiliki panjang dan arah yang sama. Jadi, vektor-vektor yang sama adalah Vektor . Vektor . Dengan demikian, diperoleh vektor-vektor yang sama adalah serta .Vektor dikatakan sama apabila memiliki panjang dan arah yang sama. Jadi, vektor-vektor yang sama adalah Vektor . Vektor . Dengan demikian, diperoleh vektor-vektor yang sama adalah serta . Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!2rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!NNNazwa NurlailiMudah IKHWAN Jawaban tidak sesuai©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Jawabanpaling sesuai dengan pertanyaan Tentukan vektor satuan dari vektor-vektor berikut. vec(v)=([-1],[1],[-1])
Blog Koma - Seperti yang telah kita bahas pada materi "pengertian vektor dan penulisannya", vektor memiliki besar panjangnya dan arah. Hal ini sangat berkaitan erat dengan materi kesamaan dua vektor yang akan kita bahas pada artikel kali ini yaitu materi Kesamaan Dua Vektor, Vektor Sejajar dan Segaris. Hal pertama yang akan kita bahas adalah pengertian kesamaan dua vektor, yang dilanjutkan dengan pembahasan vektor-vektor yang sejajar dan terakhir adalah titik-titik yang segaris kolinear. Untuk memudahkan mempelajari materi Kesamaan Dua Vektor, Vektor Sejajar dan Segaris, teman-teman harus menguasai beberapa materi vektor sebelumnya seperti "pengertian vektor", "panjang vektor" dan "vektor basis". Untuk sub-materi beberapa vektor yang sejajar dan sub-materi titik yang segaris kolinear sebenarnya memeiliki konsep yang sama yaitu menitikberatkan pada konsep kesejajaran pada vektor. Berikut penjelasan masing-masing secara lebih lengkap. Kesamaan Dua Vektor Pengertian kesamaan dua buah vektor atau lebih dapar kita tinjau dari dua hal yaitu $\spadesuit \, $ Secara Geometri Dua buah vektor dikatakan sama jika kedua vektor memiliki besar panjangnya dan arah yang sama. Misalkan vektor $ \vec{AB} $ sama dengan vektor $ \vec{CD} $ atau kita tulis $ \vec{AB} = \vec{CD} $ seperti ilustrasi berikut ini. $ \clubsuit \, $ Secara Aljabar Dua buah vektor dikatakan sama jika unsur-unsur yang bersesuaian besarnya sama nilainya sama. *. Vektor di R$^2 $ Misalkan $ \vec{a} = a_1, \, a_2 $ dan $ \vec{b} = b_1, \, b_2 $. Jika $ \vec{a} = \vec{b} $ , maka $ a_1 = b_1 $ dan $ a_2 = b_2 $ *. Vektor di R$^3$ Misalkan $ \vec{a} = a_1, \, a_2, \, a_3 $ dan $ \vec{b} = b_1, \, b_2, \, b_3 $. Jika $ \vec{a} = \vec{b} $ , maka $ a_1 = b_1 $, $ a_2 = b_2 $ dan $ a_3 = b_ 3 $ Catatan Secara Geometri, dua vektor meskipun tidak berimpit asalkan memiliki arah dan panjang yang sama, maka kita sebut kedua vektor tersebut sama. Contoh soal Kesamaan Dua Vektor 1. DIketahui titik $ A2,-1,1 $ , $ B1,0,3 $ , $ Cp, 1, 3 $ dan $ D-1, q, r $. Jika $ \vec{AB} = \vec{CD} $ , maka tentukan a. Koordinat titik C dan D , b. Nilai $ p + q + r $ Penyelesaian a. Koordinat titik C dan D , $ \begin{align} \vec{AB}& = \vec{CD} \\ B - A & = D - C \\ \left \begin{matrix} 1 \\ 0 \\ 3 \end{matrix} \right - \left \begin{matrix} 2 \\ -1 \\ 1 \end{matrix} \right & = \left \begin{matrix} -1 \\ q \\ r \end{matrix} \right - \left \begin{matrix} p \\ 1 \\ 3 \end{matrix} \right \\ \left \begin{matrix} 1 - 2 \\ 0 - -1 \\ 3 - 1 \end{matrix} \right & = \left \begin{matrix} -1 - p \\ q - 1 \\ r - 3 \end{matrix} \right \\ \left \begin{matrix} -1 \\ 1 \\ 2 \end{matrix} \right & = \left \begin{matrix} -1 - p \\ q - 1 \\ r - 3 \end{matrix} \right \end{align} $ Dari kesamaan dua vektor, maka kita peroleh persamaan $ -1 = -1 - p \rightarrow p = 0 $ $ 1 = q - 1 \rightarrow q = 2 $ $ 2 = r - 3 \rightarrow r = 5 $ Sehingga koordinat titik C dan D adalah $ Cp,1,3 = 0,1,3 $ dan $ D-1,q,r = -1,2,5 $. b. Nilai $ p + q + r $ $ p + q + r = 0 + 2 + 5 = 7 $ Jadi, nilai $ p + q + r = 7 $. 2. Perhatikan gambar jajar genjang berikut ini, Dari gambar tersebut, tentukan a. Panjang vektor $ \vec{SR} $ dan vektor $ \vec{PS} $ , b. Koordinat titik S. Penyelesaian a. Panjang vektor $ \vec{SR} $ dan vektor $ \vec{PS} $ , *. Panjang vektor $ \vec{SR} $ , Perhatikan gambar, karena PQRS adalah jajar genjang, maka panjang SR = panjang PQ. Dilain pihak, vektor $ \vec{SR} $ memiliki arah yang sama dengan vektor $ \vec{PQ} $ , sehingga vektor $ \vec{SR} = \vec{PQ} $. Panjang vektor $ \vec{SR} $ sama dengan panjang vektor $ \vec{PQ} $. $ \vec{SR} = \vec{PQ} = \sqrt{3-1^2+1-2^2+-2-0^2} $ $ = \sqrt{4 + 9 + 4} =\sqrt{17} $ *. Panjang vektor $ \vec{PS} $ , Dengan alasan yang sama seperti vektor $ \vec{SR} $, maka $ \vec{PS} = \vec{QR} $ , $ \vec{PS} = \vec{QR} = \sqrt{5-3^2+7-1^2+1-2^2} $ $ = \sqrt{4 + 36 + 9} = \sqrt{49} = 7 $ b. Koordinat titik S. Pada bagian a di atas, kita peroleh $ \vec{SR} = \vec{PQ} $ dan $ \vec{PS} = \vec{QR} $, sehingga koordinat titik S bisa kita tentukan $ \begin{align} \vec{SR} & = \vec{PQ} \\ R - S & = Q - P \\ S & = R - Q + P \\ & = \left \begin{matrix} 5 \\ 7 \\ 1 \end{matrix} \right - \left \begin{matrix} 3 \\ 1 \\ -2 \end{matrix} \right + \left \begin{matrix} 1 \\ -2 \\ 0 \end{matrix} \right \\ & = \left \begin{matrix} 5- 3 + 1 \\ 7 - 1 + -2 \\ 1 - -2 + 0 \end{matrix} \right \\ & = \left \begin{matrix} 3 \\ 4 \\ 3 \end{matrix} \right \end{align} $ Jadi, koordinat titik S adalah $ S3, 4, 3 $. Kita juga bisa menggunakan kesamaan $ \vec{PS} = \vec{QR} $, juga memberikan hasil yang sama yaitu koordinat titik S adalah $ S3, 4, 3 $. 3. Diketahui vektor $ \vec{u} = \left \begin{matrix} \frac{1}{2}m - 1 \\ -5 \end{matrix} \right $ dan $ \vec{v} = \left \begin{matrix} -2 \\ 3-2n \end{matrix} \right $. Jika $ \vec{u} = \vec{v} $ , maka tentukan a. Nilai $ m - n $! b. vektor $ \vec{u} $ dan $ \vec{v} $ c. nilai $ \vec{u} + \vec{v} $ d. nilai $ \vec{u} + \vec{v} $ Penyelesaian a. Nilai $ m - n $! $ \begin{align} \vec{u} & = \vec{v} \\ \left \begin{matrix} \frac{1}{2}m - 1 \\ -5 \end{matrix} \right & = \left \begin{matrix} -2 \\ 3-2n \end{matrix} \right \end{align} $ terbentuk persamaan $ \frac{1}{2}m - 1 = -2 \rightarrow \frac{1}{2}m = -1 \rightarrow m = -2 $ $ -5 = 3 - 2n \rightarrow 2n = 8 \rightarrow n = 4 $. Sehingga nilai $ m - n = -2 - 4 = -6 $ b. vektor $ \vec{u} $ dan $ \vec{v} $ Karena $ \vec{u} = \vec{v} $ , maka kita gunakan salah satu saja. $ \vec{u} = \vec{v} = \left \begin{matrix} -2 \\ 3-2n \end{matrix} \right = \left \begin{matrix} -2 \\ -5 \end{matrix} \right $ c. nilai $ \vec{u} + \vec{v} $ Karena $ \vec{u} = \vec{v} $ , maka panjang kedua vektor juga sama yaitu $\vec{u} + \vec{v} = 2\vec{u}=2\sqrt{-2^2 + -5^2} = 2\sqrt{4 + 25} = 2\sqrt{29} $. d. nilai $ \vec{u} + \vec{v} $ Karena $ \vec{u} = \vec{v} $ , maka $ \vec{u} + \vec{v} = 2\vec{u} = 2 \left \begin{matrix} -2 \\ -5 \end{matrix} \right = \left \begin{matrix} -4 \\ -10 \end{matrix} \right $ Sehingga $ \begin{align} \vec{u} + \vec{v} & = \sqrt{-4^2 + -10^2} \\ & = \sqrt{16 + 100} = \sqrt{116} \\ & = \sqrt{4 \times 29} = 2\sqrt{29} \end{align} $ Jadi, panjang $ \vec{u} + \vec{v} = 2\sqrt{29} $. Vektor-vektor yang sejajar Dua vektor atau lebih sejajar memiliki kemiringan vektor yang sama yaitu searah atau berlawanan arah antara vektor-vektor tersebut dimana panjang-panjang vektornya tidak harus sama. Dengan kata lain, jika dua vektor sejajar maka salah satu vektor adalah kelipatan dari vektor yang lainnya. Perhatikan ilustrasi berikut ini. $ \spadesuit \, $ Definisi dua vektor sejajar Vektor $ \vec{p} $ sejajar vektor $ \vec{q} $ ditulis $ \vec{p} // \vec{q} $ apabila $ \vec{p} = k\vec{q} \, $ , dengan $ k $ skalar , $ k \in R $. $ k $ kita sebut sebagai pengali atau kelipatan vektor yang lainnya. Ada beberapa kemungkinan nilai $ k $ 1. Jika $ k > 0 $ , maka $ \vec{p} $ searah dengan $ \vec{q} $ , 2. Jika $ k 0 $. *. Menentukan nilai $ x $ dengan syarat $ k > 0 $ dan menyelesaikan pertidaksamaannya. $ \begin{align} k & > 0 \\ x^2 - 2x - 15 & > 0 \\ x + 3x - 5 & > 0 \\ x = -3 \vee x & = 5 \end{align} $ Garis bilangannya Solusinya $ x 5 $. Jadi, kedua vektor akan searah jika nilai $ x $ memenuhi $ x 5 $. c. Jika vektor $ \vec{p} $ dan $ \vec{q} $ sejajar, tentukan nilai $ x $ agar kedua vektor berlawan arah Untuk solusi bagian c ini adalah kebalikan dari solusi bagian b yaitu syarat berlawanan arah adalah $ k < 0 $. Jadi, kedua vektor akan berlawanan arah jika nilai $ x $ memenuhi $ -3 < x < 5 $. Titik-titik yang segaris Kolinear Jika diketahui beberapa titik segaris lebih dari dua titik, maka dapat kita buat vektor dari masing-masing dua titik yang segaris kolinear juga. Karena vektor-vektor yang terbentuk segaris, maka otomatis semua vektor yang terbentuk adalah sejajar, sehingga langkah selanjutnya bisa kita terapkan konsep vektor-vektor yang sejajar seperti teori di atas sebelumnya. Misalkan terdapat titik A, B, dan C segaris, maka bisa kita bentuk vektor $ \vec{AB} $ , $ \vec{BA} $ , $ \vec{AC} $, $ \vec{CA} $ , $ \vec{BC} $ dan $ \vec{CB} $ yang segaris juga mengakibatkan sejajar dimana salah satu vektor adalah kelipatan dari vektor yang lainnya. Artinya dapat juga kita tulis $ \vec{AB} = k\vec{BC} $ atau $ \vec{AB} = n\vec{AC} $ dan lainnya asalkan vektornya melibatkan lebih dari dua titik. Contoh soal beberapa titik segaris kolinear 10. Diketahui tiga titik yaitu $ A -3,-8,-3 $ , $ B1, -2, -1 $ dan $ C3,1,0 $. Coba selidiki, apakah titik A, B, dan C terletak pada satu garis segaris/kolinear? Pembahasan *. Untuk menentukan segaris atau tidak, cukup kita bentuk dua vektor dari titik-titik yang ada dan kita cek apakah salah satu vektor adalah kelipatan dari vektor yang lain, jika ya maka ketiga titik segaris dan berlaku sebaliknya. *. Misal kita bentu vektor $ \vec{AB} = B - A = 1 - -3, -2 - -8, -1-3 = 4, 6, 2 $ $ \vec{BC} = C - B = 3 - 1, 1 - -2 , 0 - -1 = 2, 3, 1 $ *. Terlihat bahwa $ \vec{AB} $ kelipatan dari vektor $ \vec{BC} $ yaitu $ \vec{AB} = 2\vec{BC} $. Artinya dapa kita simpulkan bahwa ketiga titik A, B, dan C segaris kolinear. 11. Agar titik $ A2,y,-8 $ , $ Bx, 3y,-2 $ , dan $ C 5, 4y, z $ terletak pada satu garis lurus, maka nilai $ x + z = ....$ ! Penyelesaian *. Agar ketiga titik segariskolinear , maka dua vektor yang terbentuk dari ketiga titik tersebut harus saling berkelipatan. Misalkan kita bentuk vektor $ \vec{AB} $ dan vektor $ \vec{BC} $, kita peroleh hubungan $ \begin{align} \vec{AB} & = k \vec{BC} \\ B - A & = k C - B \\ \left \begin{matrix} x \\ 3y \\ -2 \end{matrix} \right - \left \begin{matrix} 2 \\ y \\ -8 \end{matrix} \right & = k \left[ \left \begin{matrix} 5 \\ 4y \\ z \end{matrix} \right - \left \begin{matrix} x \\ 3y \\ -2 \end{matrix} \right \right] \\ \left \begin{matrix} x - 2 \\ 2y \\ 6 \end{matrix} \right & = k \left \begin{matrix} 5 - x \\ y \\ z + 2 \end{matrix} \right \\ \left \begin{matrix} x - 2 \\ 2y \\ 6 \end{matrix} \right & = \left \begin{matrix} 5 - xk \\ ky \\ z + 2k \end{matrix} \right \end{align} $ Dari kesamaan dua vektor kita peroleh $ 2y = ky \rightarrow k = 2 $ $ x - 2 = 5 - xk \rightarrow x - 2 = 5 - x.2 \rightarrow x = 4 $ $ 6 = z + 2k \rightarrow 6 = z + 2. 2 \rightarrow z = 1 $ Sehingga nilai $ x + z = 4 + 1 = 5 $. Jadi, nilai $ x + z = 5 $. Demikian pembahasan materi Kesamaan Dua Vektor, Vektor Sejajar dan Segaris dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan "Penjumlahan dan Pengurangan pada Vektor". .
  • 394hx505ib.pages.dev/297
  • 394hx505ib.pages.dev/397
  • 394hx505ib.pages.dev/466
  • 394hx505ib.pages.dev/402
  • 394hx505ib.pages.dev/369
  • 394hx505ib.pages.dev/154
  • 394hx505ib.pages.dev/337
  • 394hx505ib.pages.dev/436
  • tentukan vektor yang sama dari vektor vektor berikut